skip to main content


Search for: All records

Creators/Authors contains: "Jagadish, S. V. Krishna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    Sorghum is one of the four major C4 crops that are considered to be tolerant to environmental extremes. Sorghum shows distinct growth responses to temperature stress depending on the sensitivity of the genetic background. About half of the transcripts in sorghum exhibit diurnal rhythmic expressions emphasizing significant coordination with the environment. However, an understanding of how molecular dynamics contribute to genotype‐specific stress responses in the context of the time of day is not known. We examined whether temperature stress and the time of day impact the gene expression dynamics in thermo‐sensitive and thermo‐tolerant sorghum genotypes. We found that time of day is highly influencing the temperature stress responses, which can be explained by the rhythmic expression of most thermo‐responsive genes. This effect is more pronounced in thermo‐tolerant genotypes, suggesting a stronger regulation of gene expression by the time of day and/or by the circadian clock. Genotypic differences were mostly observed on average gene expression levels, which may be responsible for contrasting sensitivities to temperature stress in tolerant versus susceptible sorghum varieties. We also identified groups of genes altered by temperature stress in a time‐of‐day and genotype‐specific manner. These include transcriptional regulators and several members of the Ca2+‐binding EF‐hand protein family. We hypothesize that expression variation of these genes between genotypes along with time‐of‐day independent regulation may contribute to genotype‐specific fine‐tuning of thermo‐responsive pathways. These findings offer a new opportunity to selectively target specific genes in efforts to develop climate‐resilient crops based on their time‐of‐day and genotype variation responses to temperature stress.

     
    more » « less
  2. Abstract

    Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.

     
    more » « less
  3. Abstract

    Using existing protocols, RNA extracted from seeds rich in starch often results in poor quality RNA, making it inappropriate for downstream applications. Though some methods are proposed for extracting RNA from plant tissue rich in starch and other polysaccharides, they invariably yield less and poor quality RNA. In order to obtain high yield and quality RNA from seeds and other plant tissues including roots a modified SDS-LiCl method was compared with existing methods, including TRIZOL kit (Invitrogen), Plant RNeasy mini kit (Qiagen), Furtado (2014) method, and CTAB-LiCl method. Modifications in the extraction buffer and solutions used for RNA precipitation resulted in a robust method for extracting RNA in seeds and roots, where extracting quality RNA is challenging. The modified SDS-LiCl method revealed intense RNA bands through gel electrophoresis and a nanodrop spectrophotometer detected ratios of ≥ 2 and 1.8 for A260/A230 and A260/A280, respectively. The absence of starch co-precipitation during RNA extraction resulted in enhanced yield and quality of RNA with RIN values of 7–9, quantified using a bioanalyzer. The high-quality RNA obtained was demonstrated to be suitable for downstream applications, such as cDNA synthesis, gene amplification, and RT-qPCR. The method was also effective in extracting RNA from seeds of other cereals including field-grown sorghum and corn. The modified SDS-LiCl method is a robust and highly reproducible RNA extraction method for plant tissues rich in starch and other secondary metabolites. The modified SDS-LiCl method successfully extracted high yield and quality RNA from mature, developing, and germinated seeds, leaves, and roots exposed to different abiotic stresses.

     
    more » « less
  4. Abstract

    Winter wheat (Triticum aestivumL.) is essential to maintain food security for a large proportion of the world’s population. With increased risk from abiotic stresses due to climate variability, it is imperative to understand and minimize the negative impact of these stressors, including high night temperature (HNT). Both globally and at regional scales, a differential rate of increase in day and night temperature is observed, wherein night temperatures are increasing at a higher pace and the trend is projected to continue into the future. Previous studies using controlled environment facilities and small field-based removable chambers have shown that post-anthesis HNT stress can induce a significant reduction in wheat grain yield. A prototype was previously developed by utilizing field-based tents allowing for simultaneous phenotyping of popular winter wheat varieties from US Midwest and advanced breeding lines. Hence, the objectives of the study were to (i) design and build a new field-based infrastructure and test and validate the uniformity of HNT stress application on a scaled-up version of the prototype (ii) improve and develop a more sophisticated cyber-physical system to sense and impose post-anthesis HNT stress uniformly through physiological maturity within the scaled-up tents; and (iii) determine the impact of HNT stress during grain filling on the agronomic and grain quality parameters including starch and protein concentration. The system imposed a consistent post-anthesis HNT stress of + 3.8 °C until maturity and maintained uniform distribution of stress which was confirmed by (i) 0.23 °C temperature differential between an array of sensors within the tents and (ii) statistically similar performance of a common check replicated multiple times in each tent. On average, a reduction in grain-filling duration by 3.33 days, kernel weight by 1.25% per °C, grain number by 2.36% per °C and yield by 3.58% per °C increase in night temperature was documented. HNT stress induced a significant reduction in starch concentration indicating disturbed carbon balance. The pilot field-based facility integrated with a robust cyber-physical system provides a timely breakthrough for evaluating HNT stress impact on large diversity panels to enhance HNT stress tolerance across field crops. The flexibility of the cyber-physical system and movement capabilities of the field-based infrastructure allows this methodology to be adaptable to different crops.

     
    more » « less
  5. Summary

    Heat stress during flowering has differential impact on male and female reproductive organ viability leading to yield losses in field crops. Unlike flooded rice, dryland cereals such as sorghum, pearl millet and wheat have optimised their flower opening during cooler early morning or late evening hours to lower heat stress damage during flowering. Although previous studies have concluded that pollen viability determines seed set under heat stress, recent findings have revealed pearl millet and sorghum pistils to be equally sensitive to heat stress. Integrating flower opening time during cooler hours with increased pollen and pistil viability will overcome heat stress‐induced damage during flowering under current and future hotter climatic conditions.

     
    more » « less
  6. Abstract

    Predicted increases in future global temperatures require us to better understand the dimensions of heat stress experienced by plants. Here we highlight four key areas for improving our approach towards understanding plant heat stress responses. First, although the term ‘heat stress’ is broadly used, that term encompasses heat shock, heat wave and warming experiments, which vary in the duration and magnitude of temperature increase imposed. A greater integration of results and tools across these approaches is needed to better understand how heat stress associated with global warming will affect plants. Secondly, there is a growing need to associate plant responses to tissue temperatures. We review how plant energy budgets determine tissue temperature and discuss the implications of using leaf versus air temperature for heat stress studies. Third, we need to better understand how heat stress affects reproduction, particularly understudied stages such as floral meristem initiation and development. Fourth, we emphasise the need to integrate heat stress recovery into breeding programs to complement recent progress in improving plant heat stress tolerance. Taken together, we provide insights into key research gaps in plant heat stress and provide suggestions on addressing these gaps to enhance heat stress resilience in plants.

     
    more » « less
  7. Abstract

    Rapid increases in minimum night temperature than in maximum day temperature is predicted to continue, posing significant challenges to crop productivity. Rice and wheat are two major staples that are sensitive to high night‐temperature (HNT) stress. This review aims to (i) systematically compare the grain yield responses of rice and wheat exposed to HNT stress across scales, and (ii) understand the physiological and biochemical responses that affect grain yield and quality. To achieve this, we combined a synthesis of current literature on HNT effects on rice and wheat with information from a series of independent experiments we conducted across scales, using a common set of genetic materials to avoid confounding our findings with differences in genetic background. In addition, we explored HNT‐induced alterations in physiological mechanisms including carbon balance, source–sink metabolite changes and reactive oxygen species. Impacts of HNT on grain developmental dynamics focused on grain‐filling duration, post‐flowering senescence, changes in grain starch and protein composition, starch metabolism enzymes and chalk formation in rice grains are summarized. Finally, we highlight the need for high‐throughput field‐based phenotyping facilities for improved assessment of large‐diversity panels and mapping populations to aid breeding for increased resilience to HNT in crops.

     
    more » « less
  8. Unraveling the metabolic and phytohormonal changes in anthers exposed to heat stress would help identify mechanisms regulating heat stress tolerance during the sensitive reproductive stage. Two spring wheat genotypes contrasting for heat tolerance were exposed to heat stress during heading in controlled environment chambers. Anthers were collected from main and primary spikes for metabolic and phytohormonal profiling. A significant reduction in seed set (38%), grain number (54%) and grain weight (52%) per plant was recorded in the sensitive (KSG1177) but not in the tolerant (KSG1214) genotype under heat stress compared to control. Anther metabolite accumulation did not vary quantitatively between main and primary spikes. Hierarchical clustering of the genotypes and treatments using metabolites and phytohormones revealed a distinct cluster for KSG1177 under heat stress from that of control and KSG1214. A significant increase in N‐based amino acids, ABA, IAA‐conjugate and a decrease in polyamines and organic acids were observed in wheat anthers exposed to heat stress. Unlike KSG1214, a significantly higher accumulation of amino acids, ABA and IAA‐conjugate in anthers of the sensitive KSG1177 was recorded under heat stress. These findings provide the rationale and direction towards developing molecular markers for enhancing heat stress tolerance in wheat.

     
    more » « less